
Slick	 Data	 Sharding���
How	 to	 Develop	 Scalable	 Data	

Applications	 With	 Drupal	

Tobby Hagler, Phase2 Technology

Don't	 Forget...	
Official DrupalCon London Party

Batman Live World Arena Tour

Buses leave main entrance
Fairfield Halls at 4pm

Overview	

•  Purpose – Reasons for sharding
•  Problems/Examples of a need for sharding
•  Types of scaling and sharding
•  Sharding options in Drupal

Scale:���
Horizontal	 vs	 Vertical	

Horizontal Scale
Add more machines of the same type

Vertical Scale

Bigger and badder machines

Sharding	

•  What is sharding?
•  Types of sharding – Partitioning and Federation
•  How sharding helps
•  Vs. typical monolithic Drupal database

What	 Is	 sharding?	
Simply put, sharding is

physically breaking large
data into smaller

pieces (shards) of data.

The trick is putting them
back together again…

Reasons	 for	 Sharding	

•  Sharding for scaling your application
•  Sharding for shared application data
•  Leveraging specialized technologies
•  Caching is a form of federated sharding

How	 Sharding	 Helps	

•  Scale your applications by reducing data sets in
any single database

•  Secure sensitive data by isolating it elsewhere
•  Segregates data

Be	 Sure	 You've	 Tried	
Everything	 Else	

•  Memcached
•  Boost Module
•  Load balanced web servers
•  MySQL Master/Slave replicate
•  Turning Views into Custom Queries

More	 Things	 To	 Try...	
•  Moar memory!
•  Move .htacess to vhost config
•  Apache tunes
•  MySQL tunes
•  Replace search with Apache Solr
•  Optimizing PHP (custom compile)
•  Apache Drupal module
•  Replace Apache with nginx
•  Switched to 3rd party services for comments
•  Replace contrib modules with custom development

Typical���
Balanced���
Environment	

Types	 of	 sharding	
Partitioning

•  Horizontal
•  Divides something into

two parts
•  Unshuffle
•  Reduced index size
•  Hard to do

Federation

•  Vertical
•  A set of things
•  Uses logical divisions
•  Split up across

physically different
machines

Horizontal	 Partitioning	

Scaling your application’s performance

Distributed data load

This is the Shard of Last Resort

Even/Odd	 Partitions	
•  This is not Master/Master replication
•  Rows are divided between physical databases
•  Will require custom database API to properly

achieve split rows
•  Applies to node loads, entity loads, etc
•  Achieved by auto_increment by N with different

starting offsets and application distributes writes in
round-robin fashion and via keyed mechanisms to distribute
reads and reassemble data

Horizontally���
Partitioned���
Databases	

Federation	
Vertically partitioning data by logical affiliation

Sharding for shared application data

Manageability – distributing data sets

Security - Allows for exposing certain bits of data

to other applications without exposing all

Vertically���
Scaled���
Databases	

Application	 Sharding	

Not just sharding data

Shard the components of your site

Sample	 Use	 Cases	

Collecting resumes within your existing site

Building an ideation tool

Sharding	 Resume	 Data	
•  Accepting resumes for a large corporation
•  Users submit resume via Webform
•  Submit and process data into separate

database
•  Resume data is processed by internal HR

software to evaluate potential employees

Sharding	 Schemas	

Same physical database, different schemas
Uses database prefixing in settings.php

~ or ~

Different physical databases

Uses db_set_active to switch db connections

Database	 Prefixes	
•  Handled in settings.php
•  Uses MySQL’s dot separator to target different

schemas
•  Requires that the MySQL user used by Drupal

has proper permissions
•  Ex: db_1.users and db_2.users

Database	 Prefixes���
Drupal	 6	

$db_prefix = array (
 'default' => '',
 'users' => 'shared_.',
 'sessions' => 'shared_.',
 'role' => 'shared_.',
 'authmap' => 'shared_.',
 'users_roles' => 'shared_.',
 'profile_fields' => 'shared_.',
 'profile_values' => 'shared_.',
);

Database	 Prefixes���
Drupal	 7	

$databases = array (
 'default' => array (
 'default' => array (
 'prefix' => array(
 'default' => '',
 'users' => 'shared_.',
 'sessions' => 'shared_.',
 'role' => 'shared_.',
 'authmap' => 'shared_.',
 'users_roles' => 'shared_.',
),
),
),
);

Database	 Prefixes���
Tips,	 Tricks,	 and	 Caveats	

Can share user data between Drupal and Drupal 7
with table alters and strict prevention of Drupal 7

logins or user saves

Should log in with the lower version of Drupal

Different	 Physical	
Databases	

•  Set up additional connections in settings.php
•  Change connections using db_set_active()
•  Use db_set_active() to switch back when done
•  Watch for schema caching and watchdog

errors

Different	 Databases���
Drupal	 6	

$db_url = array (
 'default' => 'mysql://user:pass@host1/db1',
 'second' => 'mysql://user:pass@host2/db2',
 'third' => 'mysql://user:pass@host3/db3',
);

Database	 Prefixes���
Drupal	 7	

$other_database = array (
 'database' => 'databasename',
 'username' => 'username',
 'password' => 'password',
 'host' => 'localhost',
 'driver’ => 'mysql',
);

Database::addConnectionInfo(’moduleKey', 'default',
$other_database);
db_set_active('moduleKey');
// Execute queries
db_set_active();

Switching	 Databases	

$schema = drupal_get_schema('table_name');
db_set_active('database_key');

// Execute queries
Drupal_write_record('table_name', $data);
db_set_active();

Saving	 Data	 in	
Another	 Database	

•  Hook_install_schema()
•  drupal_write_record()
•  Keeps web site database smaller
•  Can keep sensitive data offsite
•  Partitioned tables can limit/protect your web

site database from internal users

Saving	 Data	 in	
Another	 Database	

•  Resume data is submitted via form
•  Form’s _submit function accepts final data
•  Schema loads table definition
•  Connects to the HR instance of MySQL
•  Writes new record
•  Uploads any files to private file space
•  Switches database back

•  HR Director can query new resumes

Using	 MongoDB	
MongoDB is a NoSQL database

“Schema-less” – data schema defined in code

Fast

Document-based

Simpler to scale vertically than MySQL

MongoUK	
10gen Conference in London, UK

September 19, 2011

10gen.com/conferences/mongouk-sept-2011

MongoDB	 and	 Drupal	
drupal.org/project/mongodb

7.x allows for field storage, cache, sessions,

and blocks to be stored in MongoDB

Allows for connections to your own collections

MongoDB	 Data	
•  Four levels of objects
•  Connection
•  Database (schema)
•  Collection
•  Cursor (query results)

•  Non-relational database
•  Collections tend to be denormalized

MongoDB	 Documents	
Resumes.Resume: {
 first_name: "John",
 last_name: "Smith",
 title: "Web Developer",
 address: {
 city: "London",
 country: "UK"
 },
 skills: ['PHP', 'Drupal', 'MySQL'],
 ssn: 123456789,
}

Querying���
MongoDB	 Documents	

$applicant = $applicants->find (
 array (
 'username' => 'Smith',
 ’ssn': 1,
),
 array (
 'first_name’ => 1,
 'last_name’ => 1,
),
);

MongoDB���
Sharing	 via	 REST	

•  Simple REST – included as part of MongoDB
•  Sleepy Mongoose – REST interface for

MongoDB (Python)
•  MongoDB REST (Node.js)

Ideation���
REST	 Interface	

Get a list of all idea documents
http://127.0.0.1:28017/ideation/ideas/

Get all comments for a specific idea
http://127.0.0.1:28017/ideation/comments/…
 …?filter__id=4a8acf6e7fbadc242de5b4f3…
 …&limit=10&offset=20

Will likely need a dedicated MongoDB REST inteface

Applications	 on	
Separate	 Web	 Tiers	

•  Application sharding is data sharding
•  Separate Drupal instances
•  Use mod_proxy as a pass-through
•  Can used multiple load-balanced environments

Proxied���
Web���
Clusters	

Questions?	

Contact	
thagler@phase2technology

@phase2tech
703-548-6050

d.o: tobby
Slides: agileapproach.com

