

Damn Quick Drupal: How to make

Drupal perform and scale like a rock

star!

Presented by Michael Cooper (soyarma)

Code and Coders

Why Me? Why This Topic?

✤ Writing web apps since 2001

✤ Built CMS that powered 1500 automotive sites

✤ Ran ‘auto malls’ with 500,000 vehicles that had to return results from
DB in under 500ms

✤ Built over 550 websites

✤ Built over 150 websites in Drupal

✤ Built websites (in Drupal) that had to handle things like 5 POST
requests/second.

✤ Launched Drupal sites and had them die within 90 seconds

✤ Learned how not to have that happen again

Molasses Drupal

Why are many Drupal websites slow and fail?

Molasses Drupal

Why are many Drupal websites slow and fail?

✤ Full page renders

Molasses Drupal

Why are many Drupal websites slow and fail?

✤ Full page renders

✤ Dynamic content served to anonymous users

Molasses Drupal

Why are many Drupal websites slow and fail?

✤ Full page renders

✤ Dynamic content served to anonymous users

✤ Excessive/slow/non-optimized database queries

Molasses Drupal

Why are many Drupal websites slow and fail?

✤ Full page renders

✤ Dynamic content served to anonymous users

✤ Excessive/slow/non-optimized database queries

✤ Naughty modules

CACHE!

Cache your cache in a cache
that is cached … which better

be cached too

Your computer, the Internet at large,

and everything in between, is—in

many ways—just a large series of

caches.

Cache your cache in a cache
that is cached … which better

be cached too

WHY?

Because
stuff is
slow…

Drupal wants cache too

How does Drupal cache

✤ Drupal core and many modules instantiate caches in the DB

✤ Successive versions of Drupal have cached more and more and
done less on the fly.

✤ Variables, modules, pages, blocks, oh my

How Drupal uses the DB to
cache
✤ Cache tables store data for various modules and core

✤ Nearly all cache tables share the same schema and use cache_set()
and cache_get() to store data and retrieve it. Look up cache_set() on
api.drupal.org for more information.

✤ Caching is plugable.

✤ You can create your own cache.inc file (in Drupal 6) and create your
own cache_get and cache_set functions.

✤ Configure which cache ‘bins’ store in which cache technologies

✤ Examples of modules that plug into Drupal's cache system and change
where cache data is stored are: cache, cacherouter, memcache, and
apc.

The Testbed

✤ CPU: Quad Opteron Rackspace Cloud Server

✤ RAM: 256MB

✤ Web: Apache 2.2

✤ PHP: 5.2.17

✤ MySQL 5.1

✤ Reverse Proxy: None

Your Tools

✤ Devel and Performance Monitoring

✤ Page Load times, memory consumption and query logs…

✤ XHProf is your friend. Use it.

✤ New Relic

✤ Apache benchmark, Bombard, Siege, Jmeter, Sosta, Blitz.io

✤ Different tests for different things

Some terms

✤ Cold cache: This is the state of your Drupal site and/or server
before any data has been placed into cache.

✤ Warm cache: This is the state of your Drupal site and/or server
after data has been generated and stored in cache.

✤ Key-Value store: Servers/daemons such as Cassandra,
memcached, APC, and Redis are all examples of key-value stores.
They are simply what they sound like, simple systems for storing
data and querying it by key. They are 'No SQL' in that they are
schema-less.

✤ Op-Code Caches/Compilers: Programs/extensions such as APC,
eAccelerator, ionCube, xCache, PhpExpress, Zend Optimizer+,
WinCache all optimize and compile your PHP ahead of time so it
doesn't have to be done on the fly.

Examples of cache_set()

Queries, queries, queries...

Warmed, but not toasty

Various and sundry caches are ‘warmed up’. Page execution time
and memory are nice and trim.

Enter Key-Value stores

Is MySQL Caching?

Ensure sane MySQL settings

Use SHOW STATUS; to see the MySQL server values, both current
states and configuration settings.

✤ key_buffer_size=12M (key cache)

✤ query_cache_size=24M

✤ query_cache_limit=2M

✤ table_cache=96

✤ sort_buffer_size=12M

✤ myisam_sort_buffer_size=12M

✤ tmp_table_size=12M

No More Slow Queries

More Speed! Give us More!

APC is your friend

✤ Every time a file is read by PHP it is compiled (checked for syntax
errors, optimized, compiled into byte-code).

✤ APC (advanced PHP cache) will do this once and then cache the
results.

✤ APC will check the file every time it is accessed to determine if it is
still the same. If that happens rarely, set apc.stat to 0 and you will
save that check.

✤ Drupal modules such as cacherouter will integrate APC with
Drupal's standard cache clearing functions.

APC Stats

The Result:

And for a single node:

And for anonymous users:

Aggregate or aggravate

Save your user's browsers all those pesky extra round trips.

More on Drupal caching

✤ When does Drupal creates cache?

✤ When does Drupal clears cache?

✤ Keep your cache longer

✤ Easy wins—and easy mistakes to avoid.

✤ Minimum cache age set it and save

✤ Setting page cache is a must

✤ Always double check your headers

Drupal Normal Page Cache

Drupal Aggressive

✤ Less database, more speed.

✤ Max and min-age.

Apache & PHP

✤ mod_php vs FastCGI(d)

✤ Maximum simultaneous processes (serverlimit/maxprocesses)

✤ Apache modules

✤ Apache pre-fork vs worker

✤ Min servers and spare servers

✤ Child lifetime

Memory and time per page

Use a tool like New Relic, or Devel's performance logging to work out
how long it takes, and what peak memory is used to load pages on
your site.

Determine max concurrency

Take the amount of memory it takes on average to load a page on
your site and divide it by the amount of memory you have available
for PHP.

On my sever its about 120MB. This gives me a max concurrency of
10 simultaneous PHP scripts executing.

Look at the time it takes to execute the script on average. My
average was 289ms in this test. Add a safe margin for webserver
overhead (say 10-15%) and use that. To make the math simple I'll
say that my server actually takes 333ms to get the result out the
door.

Max Concurrency: 10

Pages per second: 30

What is your traffic peak?

After determining what your server can handle, determine what load
you actually experience.

✤ Use a tracking system (GA, statistics, performance logging,
webserver logs) to determine how many actual page loads you get
at your peak traffic time.

✤ Depending on how sharp the spike is, pike a time period that sits at
around the top 90% of that spike.

✤ Work out how many pageviews you get a minute during the peak
of that spike.

✤ Since you know how long (on average) it takes to generate a page,
you can determine how many of those requests are concurrent.

Simple formula

(P / M) x (E / 60) = C

✤ P = Number of page views that hit Drupal

✤ M = Minutes page views collected over

✤ E = Execution time per page in seconds
(from perf logging or New Relic)

✤ C = Concurrent requests

(2000 / 5) x (0.333 / 60) = 2.22

Lets Hammer it!
Number of requests: 1000

Request concurrency: 10

Time taken: 21.4 seconds

Requests/second: 233.46

Mean time/request: 42.8ms

100 Concurrent requests:

Number of requests: 5000

Request concurrency: 100

Time taken: 28.9 seconds

Requests/second: 172.86

Mean time/request: 578ms

Server maxlimit @ 20

Number of requests: 5000

Request concurrency: 100

Time taken: 32.2 seconds

Requests/second: 155.07

Mean time/request: 644ms

Worse user experience!

Assume the worst!

Assume that right in the middle of your
biggest traffic peak…

Assume the worst!

Cache Clears!

Further site optimization

✤ Save the 404s!

✤ Don't let anonymous hit imagecache generation URLs

✤ Careful with those cookies

✤ Path alias cache

✤ Session data caching

✤ Examine those views queries and views pages

✤ Edge side includes

✤ Consider always caching your front page

Further Front-End Optimization

✤ Mod Pagespeed, help out your users by helping their browers
load your site faster.

✤ Reverse proxies save Apache/PHP from running when they
don't have to.

✤ CDNs offer shorter round trips for your users, but are often not
faster than a good reverse proxy and can cause some
confusion when clearing caches.

✤ Domain Sharding, a good way to help your users get content
faster.

Summary
✤ Understand what is going on under the hood

✤ Ensure all areas of your stack are caching

✤ Apache

✤ PHP (APC or other accelerator)

✤ Drupal

✤ MySQL

✤ Check your headers

✤ OMG tune MySQL

✤ Use key-value stores for non-persistent storage

✤ Oh, and CACHE!

THANK YOU!

What did you think?

Locate this session on the

DrupalCon London website:
http://london2011.drupal.org/conference/schedule

Click the “Take the survey” link

